Nuwa 半导体工艺和器件仿真软件(TCAD)
分析半导体器件内部物理机理,优化工艺和器件设计,提高半导体器件的特性、产品研发效率和良率

Mobility Models in Nuwa TCAD

Mobility in semiconductors refers to the ability of charge carriers, such as electrons and holes, to move through the material when an electric field is applied. This property directly influences the conductivity and overall performance of semiconductor devices. Mobility models are mathematical representations that describe how mobility varies under different conditions, such as electric fields, temperature, and doping levels. In silicon (Si) semiconductors, both high-field and low-field mobility models are essential for accurate simulation and design of electronic devices. High-field models account for carrier velocity saturation at strong electric fields, while low-field models describe the linear relationship between mobility and electric field at weaker fields. These models are vital in enabling precise predictions of device behavior and optimizing the device performance. In today’s article, we will introduce the mobility models of electrons and holes in silicon (Si) materials, covering both high-field and low-field scenarios.

1. Electron/Hole Low-Field Mobility Model

Low-field mobility models describe the behavior of charge carriers when the applied electric field is relatively weak. In these conditions, the mobility of electrons and holes typically follows a linear relationship with the electric field, allowing for straightforward predictions of carrier movement.

1.1 Analytic Low-Field Mobility Model

This model is used to calculate μ0μ_{0}.

The following analytic function based upon the work of Caughey and Thomas[1,2] can be used to specify doping- and temperature-dependent low-field mobilities.

μ0=μ1(TL300)α+μ2(TL300)βμ1(TL300)α1+(NNcrit)δ(TL300)γ\mu_{0} = \mu_{1}\cdot(\frac{T_L}{300})^{\alpha}+\frac{\mu_{2} \cdot (\frac{T_L}{300})^{\beta} - \mu_{1}\cdot(\frac{T_L}{300})^{\alpha}}{1 + (\frac{N}{N_{crit}})^{\delta} \cdot (\frac{T_L}{300})^{\gamma}}

where NN is the total local dopant concentration. The parameters for this model with their default values (Arsenic-doped Silicon for electron values and Boron-doped Silicon for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ1 mu1 0.005524 0.00497 m2/(V*s)
μ2 mu2 0.142923 0.047937 m2/(V*s)
α alpha 0.0 0.0 N/A
β beta -2.3 -2.2 N/A
γ gamma -3.8 -3.7 N/A
𝛿 delta 0.73 0.70 N/A
Ncrit Ncrit 1.072×1023 1.606×1023 m-3

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μ1 N/A
μ2 N/A
α N/A
β N/A
γ N/A
𝛿 N/A
Ncrit N/A
N Total concentration (m-3)
TL Lattice temperature (K)

Reference:

[1] Caughey, D. Mo, and R. E. Thomas. "Carrier mobilities in silicon empirically related to doping and field." Proceedings of the IEEE 55.12 (1967): 2192-2193. doi: 10.1109/PROC.1967.6123.

[2] Pinto, Mark R., Conor S. Rafferty, and Robert W. Dutton. PISCES II: Poisson and continuity equation solver. 1984.

1.2 Analytic Low-Field Mobility Model Ⅱ

This model is used to calculate μ0μ_{0}.

The following analytic function based upon the work of Caughey and Thomas[1,2] can be used to specify doping- and temperature-dependent low-field mobilities.

μ0=μ1(TL300)α+μ2(TL300)βμ1(TL300)α1+(NNcrit(TL300)γ)δ(TL300)η\mu_{0} = \mu_{1}\cdot(\frac{T_L}{300})^{\alpha}+\frac{\mu_{2} \cdot (\frac{T_L}{300})^{\beta} - \mu_{1}\cdot(\frac{T_L}{300})^{\alpha}}{1 + (\frac{N}{N_{crit}\cdot(\frac{T_L}{300})^{\gamma}})^{\delta \cdot(\frac{T_L}{300})^{\eta}}}

where NN is the total local dopant concentration. The parameters for this model with their default values (n-type or p-type 6H-SiC[3]) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ1 mu1 0.003 0.001 m2/(V*s)
μ2 mu2 0.042 0.008 m2/(V*s)
α alpha -0.5 -0.5 N/A
β beta -2.5 -2.15 N/A
γ gamma 2.5 2.23 N/A
𝛿 delta 0.8 0.34 N/A
η eta 0.5 0.0 N/A
Ncrit Ncrit 6×1023 1.76×1025 m-3

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μ1 N/A
μ2 N/A
α N/A
β N/A
γ N/A
𝛿 N/A
η N/A
Ncrit N/A
N Total concentration (m-3)
TL Lattice temperature (K)

Reference:

[1] Caughey, D. Mo, and R. E. Thomas. "Carrier mobilities in silicon empirically related to doping and field." Proceedings of the IEEE 55.12 (1967): 2192-2193. doi: 10.1109/PROC.1967.6123.

[2] Pinto, Mark R., Conor S. Rafferty, and Robert W. Dutton. PISCES II: Poisson and continuity equation solver. 1984.

[3] Roschke, Matthias, and Frank Schwierz. "Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]." IEEE Transactions on electron devices 48.7 (2001): 1442-1447. doi:10.1109/16.930664.

1.3 Arora Model

Arora model is used to calculate μ0μ_{0}.

Arora model[1] includes the effect of dopping and temperature.This model has the following form:

μ0=μ1(TL300)α+μ2(TL300)β1+NNcrit(TL300)γ\mu_{0} = \mu_{1}\cdot (\frac{T_L}{300})^{\alpha}+\frac{\mu_{2}\cdot(\frac{T_L}{300})^{\beta}}{1+\frac{N}{N_{crit}\cdot(\frac{T_L}{300})^{\gamma}}}

where NN is the total local dopant concentration.

The parameters for this model with their default values (Phosphorus-doped Silicon for electron values and Boron-doped Silicon for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ1 mu1 0.00880 0.00543 m2/(V*s)
μ2 mu2 0.1252 0.0407 m2/(V*s)
α alpha -0.57 -0.57 N/A
β beta -2.33 -2.33 N/A
γ gamma 2.546 2.546 N/A
Ncrit Ncrit 1.432×1023 2.67×1023 m-3

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μ1 N/A
μ2 N/A
α N/A
β N/A
γ N/A
Ncrit N/A
N Total concentration (m-3)
TL Lattice temperature (K)

Reference:

Arora, Narain D., John R. Hauser, and David J. Roulston. "Electron and hole mobilities in silicon as a function of concentration and temperature." IEEE Transactions on electron devices 29.2 (1982): 292-295. doi: 10.1109/T-ED.1982.20698.

1.4 University of Bologna (bulk)

This model is used to calculate μ0μ_{0}.

This model implements the following relationship[1]:

μ0=μ1+μLμ11+(NDCr1(TL300)γr1)α+(NACr2(TL300)γr2)βμ21+(NDCs1(TL300)γs1+NACs2)2\mu_{0}=\mu_{1}+\frac{\mu_{L}-\mu_{1}}{1+\left(\frac{N_{D}}{C_{r 1} \left(\frac{T_L}{300}\right)^{\gamma_{r 1}}}\right)^{\alpha}+\left(\frac{N_{A}}{C_{r 2} \left(\frac{T_L}{300}\right)^{\gamma_{r 2}}}\right)^{\beta}}-\frac{\mu_{2}}{1+\left(\frac{N_{D}}{C_{s 1} \left(\frac{T_L}{300}\right)^{\gamma_{s 1}}}+\frac{N_{A}}{C_{s 2}}\right)^{-2}}

where,

μL=μmax(TL300)γ+c(TL300)\mu_{L}=\mu_{\max } \left(\frac{T_L}{300}\right)^{-\gamma+c \left(\frac{T_L}{300}\right)} μ1=μ0d(TL300)γ0dND+μ0a(TL300)γ0aNANA+ND\mu_{1}=\frac{\mu_{0 d} \left(\frac{T_L}{300}\right)^{-\gamma_{0 d}} N_{D}+\mu_{0 a} \left(\frac{T_L}{300}\right)^{-\gamma_{0 a}} N_{A}}{N_{A}+N_{D}} μ2=μ1d(TL300)γ1dND+μ1a(TL300)γ1aNANA+ND\mu_{2}=\frac{\mu_{1 d} \left(\frac{T_L}{300}\right)^{-\gamma_{1 d}} N_{D}+\mu_{1 a} \left(\frac{T_L}{300}\right)^{-\gamma_{1 a}} N_{A}}{N_{A}+N_{D}}

where NDN_{D} is the donor concentration in m3m^{-3}NAN_{A} is the acceptor concentration in m3m^{-3}.

The parameters for this model with their default values are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μmax mumax 0.1441 0.04705 m2/(V*s)
c c 0.07 0.0 N/A
γ gamma 2.45 2.16 N/A
γ0d gamm0d 0.6 1.3 N/A
μ0d mu0d 0.0055 0.0090 m2/(V*s)
γ0a gamma0a 1.3 0.7 N/A
μ0a mu0a 0.0132 0.0044 m2/(V*s)
γ1d gamma1d 0.5 2.0 N/A
μ1d mu1d 0.00424 0.00282 m2/(V*s)
γ1a gamma1a 1.25 0.8 N/A
μ1a mu1a 0.00735 0.00282 m2/(V*s)
γr1 gammar1 3.65 2.2 N/A
Cr1 Cr1 8.9×1022 1.3×1024 m-3
γr2 gammar2 2.65 3.1 N/A
Cr2 Cr2 1.22×1023 2.45×1023 m-3
γs1 gammas1 0.0 6.2 N/A
Cs1 Cs1 2.9×1026 1.1×1024 m-3
Cs2 Cs2 7×1026 6.1×1026 m-3
α alpha 0.68 0.77 N/A
β beta 0.72 0.719 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μmax N/A
c N/A
γ N/A
γ0d N/A
μ0d N/A
γ0a N/A
μ0a N/A
γ1d N/A
μ1d N/A
γ1a N/A
μ1a N/A
γr1 N/A
Cr1 N/A
γr2 N/A
Cr2 N/A
γs1 N/A
Cs1 N/A
Cs2 N/A
α N/A
β N/A
NA Acceptor concentration (m-3)
ND Donor concentration (m-3)
TL Lattice temperature (K)

Reference:

[1] Reggiani, S., et al. "A unified analytical model for bulk and surface mobility in Si n-and p-channel MOSFET's." 29th European solid-state device research conference. Vol. 1. IEEE, 1999.

1.5 University of Bologna Inversion Layer

This model is used to calculate μ0μ_{0}.

This model combines the scattering efects from Coulombic effects (μcbμ_{cb}), surface acoustic phonons (μacμ_{ac}) and surface roughness (μroughμ_{rough}) using the following relationship[1]:

1μ0=1μcb+Dμac+Dμrough\frac{1}{\mu_{0}} = \frac{1}{\mu_{cb}} + \frac{D}{\mu_{ac}} + \frac{D}{\mu_{rough}}

where,

D=exp(llcrit)D = exp(-\frac{l}{l_{crit}})

where ll is the distance to the nearest interface from the point where the mobility will be calculated. The Coulomb term and screening effects are given by:

μcb=μbulk[D(1+fscτ)1τ+(1D)]\mu_{c b}=\mu_{b u l k}\left[D\left(1+f_{s c}^{\tau}\right)^{\frac{1}{\tau}}+(1-D)\right] fsc=(N1NA+ND)ηNminNA+NDf_{s c}=\left(\frac{N_{1}}{N_{A}+N_{D}}\right)^{\eta} \frac{N_{\min }}{N_{A}+N_{D}}

where μbulkμ_{bulk} can get from University of Bologna Bulk Model, NminN_{min} is the minority carrier concentration, NDN_{D} is the donor concentration in m3m^{-3}, NAN_{A} is the acceptor concentration in m3m^{-3}.

μbulkμ_{bulk} is given by[1]:

μbulk=μ1+μLμ11+(NDCr1(TL300)γr1)α+(NACr2(TL300)γr2)βμ21+(NDCs1(TL300)γs1+NACs2)2\mu_{bulk}=\mu_{1}+\frac{\mu_{L}-\mu_{1}}{1+\left(\frac{N_{D}}{C_{r 1} \left(\frac{T_L}{300}\right)^{\gamma_{r 1}}}\right)^{\alpha}+\left(\frac{N_{A}}{C_{r 2} \left(\frac{T_L}{300}\right)^{\gamma_{r 2}}}\right)^{\beta}}-\frac{\mu_{2}}{1+\left(\frac{N_{D}}{C_{s 1} \left(\frac{T_L}{300}\right)^{\gamma_{s 1}}}+\frac{N_{A}}{C_{s 2}}\right)^{-2}}

where,

μL=μmax(TL300)γL+c(TL300)\mu_{L}=\mu_{\max } \left(\frac{T_L}{300}\right)^{-\gamma_L+c \left(\frac{T_L}{300}\right)} μ1=μ0d(TL300)γ0dND+μ0a(TL300)γ0aNANA+ND\mu_{1}=\frac{\mu_{0 d} \left(\frac{T_L}{300}\right)^{-\gamma_{0 d}} N_{D}+\mu_{0 a} \left(\frac{T_L}{300}\right)^{-\gamma_{0 a}} N_{A}}{N_{A}+N_{D}} μ2=μ1d(TL300)γ1dND+μ1a(TL300)γ1aNANA+ND\mu_{2}=\frac{\mu_{1 d} \left(\frac{T_L}{300}\right)^{-\gamma_{1 d}} N_{D}+\mu_{1 a} \left(\frac{T_L}{300}\right)^{-\gamma_{1 a}} N_{A}}{N_{A}+N_{D}}

where NDN_{D} is the donor concentration in m3m^{-3}NAN_{A} is the acceptor concentration in m3m^{-3}.

The surface scattering terms are defined as:

μac=c(TL300)γc(NA+NDN2)aFδ\mu_{a c} =c\left(\frac{T_L}{300}\right)^{-\gamma_{c}}\left(\frac{N_{A}+N_{D}}{N_{2}}\right)^{a} F_{\perp}^{-\delta} μrough =d(TL300)γd(NA+ND+N3N4)bFγ\mu_{\text {rough }} =d\left(\frac{T_L}{300}\right)^{\gamma_{d}}\left(\frac{N_{A}+N_{D}+N_{3}}{N_{4}}\right)^{b} F_{\perp}^{-\gamma}

where FF_{⊥} is the electric field components perpendicular to the current density vector and TLT_{L} is lattice temperature.

The parameters for this model with their default values (n-MOSFET for electron values and p-MOSFET for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μmax mumax 0.1441 0.04705 m2/(V*s)
c c 0.07 0.0 N/A
γL gammaL 2.45 2.16 N/A
γ0d gamm0d 0.6 1.3 N/A
μ0d mu0d 0.0055 0.0090 m2/(V*s)
γ0a gamma0a 1.3 0.7 N/A
μ0a mu0a 0.0132 0.0044 m2/(V*s)
γ1d gamma1d 0.5 2.0 N/A
μ1d mu1d 0.00424 0.00282 m2/(V*s)
γ1a gamma1a 1.25 0.8 N/A
μ1a mu1a 0.00735 0.00282 m2/(V*s)
γr1 gammar1 3.65 2.2 N/A
Cr1 Cr1 8.9×1022 1.3×1024 m-3
γr2 gammar2 2.65 3.1 N/A
Cr2 Cr2 1.22×1023 2.45×1023 m-3
γs1 gammas1 0.0 6.2 N/A
Cs1 Cs1 2.9×1026 1.1×1024 m-3
Cs2 Cs2 7×1026 6.1×1026 m-3
α alpha 0.68 0.77 N/A
β beta 0.72 0.719 N/A
N1 N1 2.34×1022 2.02×1022 m-3
N2 N2 4×1021 7.8×1021 m-3
N3 N3 1.0×1023 2×1021 m-3
N4 N4 2.4×1024 6.6×1023 m-3
c c 1.8 0.5726 m2/(V*s)
γc gammac 1.6 1.3 N/A
d d 5.8×1014 7.82×1011 m2/(V*s)
γd gammad 0 1.4 N/A
τ tau 1.0 3.0 N/A
η eta 0.3 0.5 N/A
a a 0.026 -0.02 N/A
b b 0.11 0.08 N/A
lcrit lcrit 10-8 10-8 m
δ delta 0.29 0.3 N/A
γ gamma 2.64 2.24 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Transverse electric field (V/m)
l The distance to the nearest interface from the simulation point (m)
μmax N/A
c N/A
γL N/A
γ0d N/A
μ0d N/A
γ0a N/A
μ0a N/A
γ1d N/A
μ1d N/A
γ1a N/A
μ1a N/A
γr1 N/A
Cr1 N/A
γr2 N/A
Cr2 N/A
γs1 N/A
Cs1 N/A
Cs2 N/A
α N/A
β N/A
N1 N/A
N2 N/A
N3 N/A
N4 N/A
c N/A
γc N/A
d N/A
γd N/A
τ N/A
η N/A
a N/A
b N/A
δ N/A
γ N/A
lcrit N/A
NA Acceptor concentration (m-3)
ND Donor concentration (m-3)
TL Lattice temperature (K)

Issues:

The default parameters fit very low doping concentration well, but those parameters still need to fit with a higher doping concentration (Fig. 1 in ref 1)

Reference:

Reggiani, S., et al. "A unified analytical model for bulk and surface mobility in Si n-and p-channel MOSFET's." 29th European solid-state device research conference. Vol. 1. IEEE, 1999.

1.6 Dorkel-Leturcq Model

This model is used to calculate μ0\mu_{0}.

The Dorkel and Leturcq Model[1] for low-field mobility includes the dependence on temperature, doping, and carrier-carrier scattering. This model has the form:

μn0,p0=μn,pL[(1.0251+[2.126(μn,pLμn,pIC)]0.715)0.025]\mu_{n_0, p_0}=\mu_{n, p}^{L}\left[\left(\frac{1.025}{1+\left[2.126\left(\frac{\mu_{n, p}^{L}}{\mu_{n, p}^{IC}}\right)\right]^{0.715}}\right)-0.025\right]

where μL\mu^L is the lattice scattering, μI\mu^I is the ionized impurity scattering, and μC\mu^C is the carrier-carrier scattering. Here, μIC\mu^{IC} is defined as:

μn,pIC=[1μC+1μn,pI]1\mu_{n, p}^{I C}=\left[\frac{1}{\mu^{C}}+\frac{1}{\mu_{n, p}^{I}}\right]^{-1}

where

μC=1.041021(TL300)3/2npln[1+7.451013(TL300)2(np)1/3]\mu^{C}=\frac{1.04 \cdot 10^{21}\left(\frac{T_{L}}{300}\right)^{3 / 2}}{\sqrt{n p} \ln \left[1+7.45 \cdot 10^{13}\left(\frac{T_{L}}{300}\right)^{2}(n p)^{-1 / 3}\right]} μnI=AN(TL)3/2Nf[BN(TL)2N]\mu_{n}^{I} =\frac{{A_N}\cdot\left(T_{L}\right)^{3 / 2}}{N} f\left[\frac{{B_N}\cdot\left(T_{L}\right)^{2}}{N}\right] μpI=AP(TL)3/2Nf[BP(TL)2N]\mu_{p}^{I} =\frac{{A_P}\cdot\left(T_{L}\right)^{3 / 2}}{N} f\left[\frac{{B_P}\cdot\left(T_{L}\right)^{2}}{N}\right]

Here, NN is the total concentration, TLT_{L} is the lattice temperature and nn,pp are the electron and hole carrier concentrations, respectively .

f(x)=[ln(1+x)x1+x]1f(x)=\left[\ln (1+x)-\frac{x}{1+x}\right]^{-1}

The values of the lattice scattering terms, μn,pL\mu_{{n,p}}^{L} are defined by following equations.

μn,pL=μL0(TL300)α\mu_{ {n, p}}^{L}=\mu_{L0}\left(\frac{T_{L}}{300}\right)^{-\alpha}

The parameters for this model with their default values (Phosphorus-doped Silicon for electron values and Boron-doped Silicon for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μL0 muL0 0.1430 0.0495 m2/(V*s)
α alpha 2.2 2.2 N/A
A A 4.61×1023 1.0×1023 m-3
B B 1.52×1021 6.25×1020 m-3

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μL0 N/A
α N/A
A N/A
B N/A
TL Lattice temperature (K)
N Total doping concentration (m-3)
n Electron concentration (m-3)
p Hole concentration (m-3)

Reference:

[1] Dorkel, J. M., and Ph Leturcq. "Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level." Solid-State Electronics 24.9 (1981): 821-825. doi: 10.1016/0038-1101(81)90097-6

1.7 Klaassen Model

Klaassen's model is used to calculate μ0\mu_{0}.

The model by D. B. M. Klaassen[1,2] includes the effects of lattice scattering, impurity scattering, carrier-carrier scattering, and impurity clustering effects at high concentration.

The total mobility can be described by its components using Matthiessen’s rule as:

μ01=μL1+μDAP1\mu_{0}^{-1}=\mu_{L}^{-1}+\mu_{D A P}{ }^{-1}

where μL\mu_{L} are the electron and hole mobilities due to lattice scattering, μDAP\mu_{\text{DAP}} are the electron and hole mobilities due to donor (D), acceptor (A), screening (P) and carrier-carrier scattering.

μL=μmax(300TL)θ\mu_L = \mu_{max}*(\frac{300}{T_L})^\theta

The impurity-carrier scattering components of the total mobility are given by:

μDAP=μNNscNsc, eff (Nref1Nsc)α+μc(n+pNsc, eff )\mu_{D A P}=\mu_{N} \frac{N_{s c}}{N_{ s c, \text { eff }}}\left(\frac{N_{ref1}}{N_{s c}}\right)^{\alpha}+\mu_{c}\left(\frac{n+p}{N_{ s c, \text { eff }}}\right)

The impurity scattering component, μN\mu_{N} ,is given by:

μN=μmax2μmaxμmin(TL300)3α1.5\mu_N = \frac{\mu_{max}^{2}}{\mu_{max}-\mu_{min}}\cdot(\frac{T_L}{300})^{3\alpha-1.5}

The carrier-carrier scattering component, μc\mu_c, is given by:

μc=μminμmaxμmaxμmin(300TL)0.5\mu_c = \frac{\mu_{min}*\mu_{max}}{\mu_{max}-\mu_{min}}\cdot(\frac{300}{T_L})^{0.5}

The NscN_{sc} parameter is given by:

Nsc=ND+NA+pfor  electronN_{sc} = N_D+N_A+p \qquad for \ \ electron Nsc=ND+NA+nfor  holeN_{sc} = N_D+N_A+n \qquad for \ \ hole

where NDN_{D} is the donor concentration in m3m^{-3}, NAN_{A} is the acceptor concentration in m3m^{-3}, nn is the electron concentration in m3m^{-3} and pp is the hole concentration in m3m^{-3}.

The Nsc,effN_{{sc, eff}} parameter is given by:

Nsc,eff=ND+G(Pn)NA+(pF(Pn))for  electronsN_{sc, eff} = N_D+G(P_n)\cdot N_A+(\frac{p}{F(P_n)}) \quad for\ \ electrons Nsc,eff=NA+G(Pp)ND+(nF(Pp))for  holesN_{sc, eff} = N_A+G(P_p)\cdot N_D+(\frac{n}{F(P_p)}) \quad for\ \ holes

The function, G(Pn)G(P_{n}) and G(Pp)G(P_{p}) are given by:

G(Pn)=1s1[s2+Pn((TL/300)me)s4]s3+s5[Pn(me(TL/300))s7]s6G(P_n) = 1-\frac{s_1}{[s_2+P_n\cdot (\frac{(T_L/300)}{m_e})^{s_4}]^{s_3}}+\frac{s_5}{[P_n \cdot (\frac{m_e}{(T_L/300)})^{s_7}]^{s_6}} G(Pp)=1s1[s2+Pp((TL/300)mh)s4]s3+s5[Pp(mh(TL/300))s7]s6G(P_p) = 1-\frac{s_1}{[s_2+P_p\cdot (\frac{(T_L/300)}{m_h})^{s_4}]^{s_3}}+\frac{s_5}{[P_p \cdot (\frac{m_h}{(T_L/300)})^{s_7}]^{s_6}}

Here, mem_{e} and mhm_{h} are the ratio of electron and hole effective masses to free masses and the parameters s1s_{1} through s7s_{7} are user-specifiable model parameters.

The function, F(Pn)F(P_n) and F(Pp)F(P_p) are given by:

F(Pn)=r1Pnr6+r2+r3memhPnr6+r4+r5memhF(P_n) = \frac{r_1 \cdot P_n^{r_6} + r_2 + r_3 \cdot \frac{m_e}{m_h}}{P_n^{r_6}+r_4+r_5\cdot \frac{m_e}{m_h}} F(Pp)=r1Ppr6+r2+r3mhmePpr6+r4+r5mhmeF(P_p) = \frac{r_1 \cdot P_p^{r_6} + r_2 + r_3 \cdot \frac{m_h}{m_e}}{P_p^{r_6}+r_4+r_5\cdot \frac{m_h}{m_e}}

where the parameters, r1r_{1} through r6r_{6}, are user-specifiable model parameters.

The screening parameters, PnP_{n} and PpP_{p}, are given by:

Pn=[FCWPCW,n+FBHPBH,n]1P_n = [\frac{F_{CW}}{P_{CW, n}}+\frac{F_{BH}}{P_{BH, n}}]^{-1} Pp=[FCWPCW,p+FBHPBH,p]1P_p = [\frac{F_{CW}}{P_{CW, p}}+\frac{F_{BH}}{P_{BH, p}}]^{-1}

Here, the FCWF_{CW} and FBHF_{BH} parameters are user-specifiable model parameters.

The functions, PBH,nP_{BH,n} and PBH,pP_{BH,p}, PCW,nP_{CW,n}, and PCW,pP_{CW,p} are given by the following equations.

PBH,n=1.361020n+pme(TL300)2P_{BH,n} = \frac{1.36*10^{20}}{n+p} \cdot m_e \cdot (\frac{T_L}{300})^2 PBH,p=1.361020n+pmh(TL300)2P_{BH,p} = \frac{1.36*10^{20}}{n+p} \cdot m_h \cdot (\frac{T_L}{300})^2 PCW,n=3.971013[1Zn3Nsc(TL300)3]23P_{CW,n} = 3.97*10^{13} \cdot [\frac{1}{Z_n^3 \cdot N_{sc}} \cdot (\frac{T_L}{300})^3]^{\frac{2}{3}} PCW,p=3.971013[1Zp3Nsc(TL300)3]23P_{CW,p} = 3.97*10^{13} \cdot [\frac{1}{Z_p^3 \cdot N_{sc}} \cdot (\frac{T_L}{300})^3]^{\frac{2}{3}}

ZnZ_n and ZpZ_p are clustering functions given by:

Zn=1+1CD+(Nref,DND)2Z_n = 1 + \frac{1}{C_D + (\frac{N_{ref, D}}{N_D})^2} Zp=1+1CA+(Nref,ANA)2Z_p = 1 + \frac{1}{C_A + (\frac{N_{ref, A}}{N_A})^2}

where CDC_D, CAC_A, Nref,DN_{ref, D}, and Nref,AN_{ref,A} are user-definable parameters.

The parameters for this model with their default values (Arsenic-doped Silicon for electron values and Boron-doped Silicon for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μmax mumax 0.1417 0.04705 m2/(V*s)
μmin mumin 0.00522 0.00449 m2/(V*s)
θ theta 2.285 2.247 N/A
α alpha 0.68 0.719 N/A
Nref1 Nref1 9.68×1022 2.23×1023 m-3
me me 1.0 1.0 N/A
mh mh 1.258 1.258 N/A
s1 s1 0.89233 0.89233 N/A
s2 s2 0.41372 0.41372 N/A
s3 s3 0.19778 0.19778 N/A
s4 s4 0.28227 0.28227 N/A
s5 s5 0.005978 0.005978 N/A
s6 s6 1.80618 1.80618 N/A
s7 s7 0.72169 0.72169 N/A
r1 r1 0.7643 0.7643 N/A
r2 r2 2.2999 2.2999 N/A
r3 r3 6.5502 6.5502 N/A
r4 r4 2.3670 2.3670 N/A
r5 r5 -0.8552 -0.8552 N/A
r6 r6 0.6478 0.6478 N/A
FCW FCW 2.459 2.459 N/A
FBH FBH 3.828 3.828 N/A
C C 0.21 0.50 N/A
Nref Nref 4.0×1026 7.2×1026 m-3

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μmax N/A
μmin N/A
θ N/A
α N/A
Nref1 N/A
s1 N/A
s2 N/A
s3 N/A
s4 N/A
s5 N/A
s6 N/A
s7 N/A
r1 N/A
r2 N/A
r3 N/A
r4 N/A
r5 N/A
r6 N/A
FCW N/A
FBH N/A
C N/A
Nref N/A
NA Acceptor concentration (m-3)
ND Donor concentration (m-3)
TL Lattice temperature (K)
n Electron concentration (m-3)
p Hole concentration (m-3)
me The ratio of electron effective mass to free mass
mh The ratio of hole effective mass to free mass

Issues:

  1. Minority electron mobility is not fitting well (Fig. 6 in reference 1)

  2. The value of parameter r5 in reference 1 is -0.01552. In C software and S software, r5 is -0.8552.

Reference:

[1] Klaassen, D. B. M. "A unified mobility model for device simulation—I. Model equations and concentration dependence." Solid-State Electronics 35.7 (1992): 953-959. doi: 10.1016/0038-1101(92)90325-7

[2] Klaassen, D. B. M. "A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime." Solid-State Electronics 35.7 (1992): 961-967. doi: 10.1016/0038-1101(92)90326-8

1.8 Lombardi CVT Model

This model is used to calculate μ0\mu_0.

Lombardi CVT model[1] includes the transverse field, doping dependent and temperature dependent parts of the mobility. These components , μAC\mu_{AC}, μsr\mu_{sr} and μb\mu_{b}, are combined using Matthiessen’s rule as follows:

μ01=μAC1+μb1+μsr1\mu_0^{-1} = \mu_{AC}^{-1} + \mu_{b}^{-1} + \mu_{sr}^{-1}

The first term, μAC\mu_{AC}, is the effect of surface phonon scattering:

μAC=B(EE1)E+(C(NN1)τ(EE1)D)T1TL\mu_{AC} = \frac{B}{(\frac{E_{\perp}}{E_1})^E}+\left(\frac{C \cdot ( \frac{N}{N_1})^{\tau}}{(\frac{E_{\perp}}{E_1})^D} \right) \cdot \frac{T_1}{T_L}

where TLT_L is the lattice temperature, EE_{\perp} is the electric field components perpendicular to the current density vector, and NN is the total doping concentration. In E1E_1 is 1V/m1V/m, N1N_1 is 1m31m^{-3}, and T1T_1 is 1K1K. The parameters, BB, CC, DD, EE, τ\tau, are user-defined.

The second term, μsr\mu_{sr}, is the effect of surface roughness and is given by:

1μsr=(EE1)KDEL+(EE1)3FEL\frac{1}{\mu_{sr}} = \frac{(\frac{E_{\perp}}{E_1})^K}{DEL} + \frac{(\frac{E_{\perp}}{E_1})^3}{FEL}

The default values of FELFEL are set so high that the second term can be ignored. The KK, DELDEL, FELFEL parameters are user-definable.

The third mobility component, μb\mu_b, is the effect of scattering with optical intervalley phonons and is given by:

μb=μ0exp(PCN)+[μmax(TL300)γμ0]1+(NCR)αμ11+(CSN)β\mu_b = \mu_0 \cdot exp(\frac{-P_C}{N}) + \frac{[\mu_{max} \cdot (\frac{T_L}{300})^{-\gamma}-\mu_0]}{1+(\frac{N}{C_R})^{\alpha}}-\frac{\mu_{1}}{1+(\frac{C_S}{N})^{\beta}}

Here, NN is the total density of impurities.

Due to the fact that μAC\mu_{AC} and μsr\mu_{sr} are related to interaction with an interface, you can specify the LCRITL_{CRIT} for electrons or holes to modify this interaction. The total mobility can be modified to

1μ0=exp(lLCRIT)(1μAC+1μsr)+1μb\frac{1}{\mu_0} = exp(-\frac{l}{L_{CRIT}}) \cdot(\frac{1}{\mu_{AC}} + \frac{1}{\mu_{sr}}) + \frac{1}{\mu_b}

where ll is the distance to the nearest interface from the point where the mobility will be calculated.

The parameters for this model with their default values (n-MOSFET for electron values and p-MOSFET for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
α alpha 0.68 0.71 N/A
β beta 2.0 2.0 N/A
B B 4.75×103 9.925×102 m2/(V*s)
C C 17.4 88.42 m2/(V*s)
CR CR 9.68×1022 2.23×1023 m-3
CS CS 3.43×1026 6.10×1026 m-3
DEL DEL 5.82×1010 2.055×1010 m2/(V*s)
D D 0.333 0.333 N/A
E E 1.0 1.0 N/A
FEL FEL 1.0×1054 1.0×1054 m2/(V*s)
K K 2.0 2.0 N/A
γ gamma 2.5 2.2 N/A
μ0 mu0 0.00522 0.00449 m2/(V*s)
μ1 mu1 0.00434 0.00290 m2/(V*s)
μmax mumax 0.1417 0.04705 m2/(V*s)
Lcrit Lcrit 0.01 0.01 m
PC Pc 0.0 9.23×1022 m-3
τ tau 0.125 0.0317 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
E Transverse electric field (V/m)
l The distance to the nearest interface from the simulation point (m)
α N/A
β N/A
B N/A
C N/A
CR N/A
CS N/A
DEL N/A
D N/A
E N/A
FEL N/A
K N/A
γ N/A
μ0 N/A
μ1 N/A
μmax N/A
PC N/A
τ N/A
N Total concentration (m-3)
Lcrit N/A
TL Lattice temperature (K)

Reference:

[1] Lombardi, Claudio, et al. "A physically based mobility model for numerical simulation of nonplanar devices." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 7.11 (1988): 1164-1171. doi: [10.1109/43.9186]

1.9 Masetti Model

Masetti model is used to calculate μ0\mu_0.

This model implements the following relationship[1]:

μ0=μmin1ePcNi+μmax(TLT0)ζμmin21+(NiCr)αμ11+(CsNi)β\mu_{0}=\mu_{\min 1} e^{-\frac{P_{c}}{N_{i}}}+\frac{\mu_{\max }\left(\frac{T_L}{T_{0}}\right)^{-\zeta}-\mu_{\min 2}}{1+\left(\frac{N_{i}}{C_{r}}\right)^{\alpha}}-\frac{\mu_{1}}{1+\left(\frac{C_{s}}{N_{i}}\right)^{\beta}}

where NiN_i is the total local dopant concentration.

Symbol Parameter Name Electron Value Hole Value Units
μmax mumax 0.1417 0.04705 m2/(V*s)
μmin1 mumin1 0.00522 0.00449 m2/(V*s)
μmin2 mumin2 0.00522 0 m2/(V*s)
μ1 mu1 0.00434 0.0029 m2/(V*s)
ζ zeta 2.5 2.2 N/A
Pc Pc 0 9.3×1022 m-3
Cr Cr 9.68×1022 2.23×1023 m-3
Cs Cs 3.34×1026 6.1×1026 m-3
α alpha 0.68 0.719 N/A
β beta 2.0 2.0 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
μmax N/A
μmin1 N/A
μmin2 N/A
μ1 N/A
ζ N/A
Pc N/A
Cr N/A
Cs N/A
α N/A
β N/A
Ni Total concentration (m-3)
TL Lattice temperature (K)

Reference:

[1] Masetti, Guido, Maurizio Severi, and Sandro Solmi. "Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon." IEEE Transactions on electron devices 30.7 (1983): 764-769. doi: 10.1109/T-ED.1983.21207

1.10 Shirahata’s Mobility Model

The Shirahata Mobility Model is used to calculate μ0\mu_0.

The Shirahata Mobility Model[1] is a general purpose MOS mobility model that accounts for screening effects in the inversion layer.

μ=μ0(TL300)θ[1+EE1]P1+[EE2]P2\mu = \frac{\mu_0 \cdot (\frac{T_L}{300})^{-\theta}}{[1+\frac{|E_{\perp}|}{E_1}]^{P_1}+[\frac{|E_{\perp}|}{E_2}]^{P_2}}

where EE_{\perp} is the electric field components perpendicular to the current density vector.

The parameters for this model with their default values (n-MOSFET for electron and p-MOSFET for hole) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ0 mu0 0.1430 0.0500 m2/(V*s)
E1 E1 6.3×105 8.0×105 V/m
E2 E2 7.7×107 3.9×107 V/m
P1 P1 0.28 0.3 N/A
P2 P2 2.9 1.0 N/A
θ theta 2.285 2.247 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
E Transverse electric field (V/m)
μ0 N/A
E1 N/A
E2 N/A
P1 N/A
P2 N/A
θ N/A
TL Lattice temperature (K)

Reference:

[1] Shirahata, Masayoshi, et al. "A mobility model including the screening effect in MOS inversion layer." IEEE transactions on computer-aided design of integrated circuits and systems 11.9 (1992): 1114-1119. doi: 10.1109/43.159997

1.11 Watt Model

This model is used to calculate μ0\mu_0.

Watt Model[1] includes phonon scattering, surface roughness scattering and charged impurity scattering mechanisms.

The phonon and surface roughness components are functions of effective electric field. The charged impurity component is a function of the channel doping density.

The effective mobilities:

1μ0=1Mref1(106Eeff)α1+1Mref2(106Eeff)α2+1Mref3(1018NB)1(1012Ni)α3\frac{1}{\mu_{0}} = \frac{1}{M_{ref1}}(\frac{10^6}{E_{eff}})^{\alpha_1} + \frac{1}{M_{ref2}}(\frac{10^6}{E_{eff}})^{\alpha_2} + \frac{1}{M_{ref3}}(\frac{10^{18}}{N_B})^{-1}(\frac{10^{12}}{N_i})^{\alpha_3}

Here, NBN_B is the surface trapped charge density, NiN_i is the inversion layer charge density and EeffE_{eff} is the effective electric field given by:

Eeff=E+ETA(E0E)E_{eff} = E_{\perp} + E_{TA} \cdot(E_0-E_{\perp})

where EE_{\perp} is the electric field perpendicular to the current flow and E0E_0 is the perpendicular electric field at the insulator-semiconductor interface. The parameter ETAE_{TA} is user-definable.

The parameters for this model with their default values (n-MOSFET for electron values and p-MOSFET for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
ETA ETA 0.50 0.33 N/A
Mref1 Mref1 0.0481 0.00928 m2/(V*s)
Mref2 Mref2 0.0591 0.0124 m2/(V*s)
Mref3 Mref3 0.1270 0.0534 m2/(V*s)
α1 alpha1 -0.16 -0.296 N/A
α2 alpha2 -2.17 -1.62 N/A
α3 alpha3 1.07 1.02 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
E Transverse electric field (V/m)
E0 Transverse electric field at the interface (V/m)
ETA N/A
Mref1 N/A
Mref2 N/A
Mref3 N/A
α1 N/A
α2 N/A
α3 N/A
Ni Total concentration (m-3)
NB Surface trapped charge density (m-3)

1.11.1 Modified Watt Model

Parameters, YmaxY_{max}, is the maximum value of the YY coordinate.

Parameters, XminX_{min} and XmaxX_{max}, is the range of the model in the X direction.

The effective normal electric field can be modified as following:

E=Eyexp((yyint)YCHAR)E_{\perp} = E_y \cdot exp\left(\frac{-(y-y_{int})}{Y_{CHAR}}\right)

where EE_{\perp} is the transverse electric field, EyE_y is the transverse electric field at the interface, yy is the local YY coordinate and yinty_{int} is the YY coordinate of the interface. The YCHARY_{CHAR} parameters are user-definable.

The parameters for this model with their default values are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
Xmin Xmin -1.0×1030 -1.0×1030 m
Xmax Xmax 1.0×1030 1.0×1030 m
Ymax Ymax -1.0×1030 -1.0×1030 m
YCHAR YCHAR 1.0×1030 1.0×1030 m

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
Ey Transverse electric field at the interface (V/m)
y The local Y coordinate
Xmin Minimum value of the X coordinate (m)
Xmax Maximum value of the X coordinate (m)
Ymax Maximum value of the Y coordinate (m)
YCHAR N/A
yint The Y coordinate of the interface (m)

Issues:

  1. The default parameters fit very low doping concentration well, but those parameters still need to fit with a higher doping concentration( Fig. 4 in ref1 )

Reference:

[1] Watt, Jeffrey Thomas. Modeling the performance of liquid-nitrogen-cooled CMOS VLSI. Stanford University, 1989.

Here marks the end of the low field mobility models discussion.
Please proceed to the next article for high field mobility models of electrons and holes.

2. Electron/Hole High-Field Mobility Model

High-field mobility models come into play when the electric field strength is significant, causing the charge carriers to experience velocity saturation. In such scenarios, the mobility of electrons and holes deviates from the linear relationship, requiring more complex models to accurately describe their behavior.

2.1 Constant Mobilities

The simplest mobility model uses constant mobilities μ0n\mu_{0n} and μ0p\mu_{0p} for electrons and holes, respectively, throughout each material region in the device.

The parameters for this model with their default values are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ0 mu0 0.1 0.05 m2/(V*s)

2.2 Two-piece mobility model

This model is used to calculate μ\mu.

Two-piece mobility model is a field dependent mobility model and is given by:

μ=μ0for  F<F0\mu= \mu_{0} \quad for \ \ F < F_{0} μ=vsat/Ffor  FF0\mu = v_{sat} / F \quad for \ \ F \geq F_{0} vsat=μ0F0v_{sat} = \mu_{0} F_{0}

where F0F_{0} is a threshold field beyond which the carrier velocity saturates to a constant and vsatv_{sat} is saturation velocity.

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Parallel electric field (V/m)
μ0 Low-field mobility (m2/(V*s))
vsat Saturation velocity (m/s)

2.3 Canali Model

This model is used to calculate μ\mu.

The Canali or beta model[1,2] is given by:

μ=μ0(1+(μ0F/vs)β)1/β\mu=\frac{\mu_{0 }}{\left(1+\left(\mu_{0 } F / v_{s }\right)^{\beta}\right)^{1 / \beta}}

Here, FF is the parallel electric field and μ0\mu_0 is the low-field mobility.

The saturation velocities are calculated by default from the temperature-dependent models[3].

vs=α1+θexp(TLTnom)v_s = \frac{\alpha}{1+\theta \cdot exp\left( \frac{T_L}{T_{nom}} \right)}

The parameter β\beta depends on lattice temperature (TLT_L), and is given by:

β=β0(TL300)βexp\beta = \beta_0 \cdot \left( \frac{T_L}{300} \right)^{\beta_{exp}}

The parameters for this model with their default values (n-Si for electron values and p-Si for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
μ0 mu0 0.1450 0.0450 m2/(V*s)
β0 beta0 1.109 1.213 N/A
βexp betaexp 0.66 0.17 N/A
α alpha 2.4×105 2.4×105 m/s
θ theta 0.8 0.8 N/A
Tnom Tnom 600 600 K

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Parallel electric field (V/m)
μ0 Low-field mobility (m2/(V*s))
β0 N/A
βexp N/A
α N/A
θ N/A
Tnom N/A

Reference:

[1] Turin, Valentin O. "A modified transferred-electron high-field mobility model for GaN devices simulation." Solid-state electronics 49.10 (2005): 1678-1682. doi: 10.1016/j.sse.2005.09.002

[2] Canali, Claudio, et al. "Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature." IEEE Transactions on electron devices 22.11 (1975): 1045-1047. doi: 10.1109/T-ED.1975.18267

[3] Jacoboni, Canali, et al. "A review of some charge transport properties of silicon." Solid-State Electronics 20.2 (1977): 77-89. doi: 10.1016/0038-1101(77)90054-5

2.4 Transferred Electron Model

This model is used to calculate μ\mu.

The transferred electron model[1, 2] is used in many III-V compound semiconductors which exhibit negative differential resistance.

The model is given by:

μ=μ0+(vs/F0)(F/F0)31+(F/F0)4\mu=\frac{\mu_{0}+\left(v_{s} / F_{0}\right)\left(F / F_{0}\right)^{3}}{1+\left(F / F_{0}\right)^{4}}

where FF is the parallel electric field, μ0\mu_0 is the low-field mobility, F0F_{0} is a threshold field beyond which the carrier velocity saturates to a constant and vsv_{s} is saturation velocity.

The saturation velocity is given by:

vs=vs0(300TL)αv_s = v_{s0} \left( \frac{300}{T_L} \right)^{\alpha}

The parameters for this model with their default values (GaAs) are defined in the following table:

Symbol Parameter Name Electron Value Units
μ0 mu0 0.75 m2/(V*s)
vs0 vs0 1×105 m/s
F0 F0 400000 V/m
α alpha 2.3 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Parallel electric field (V/m)
μ0 Low-field mobility (m2/(V*s))
vs0 Saturation velocity (m/s)
F0 N/A
α N/A
TL Lattice temperature (K)

Reference:

[1] Turin, Valentin O. "A modified transferred-electron high-field mobility model for GaN devices simulation." Solid-state electronics 49.10 (2005): 1678-1682. doi: 10.1016/j.sse.2005.09.002

[2] Selberherr, Siegfried. Analysis and simulation of semiconductor devices. Springer Science & Business Media, 1984.

2.5 Modified Transferred Electron Mode

This model is used to calculate μ\mu.

A modified transferred-electron mobility model designed for GaN devices[1, 2].

The total mobility is the combination of modified transferred electron model and Canali Model.

μ=sin2(π/2x)μMTE(F)+cos2(π/2x)μC(F)\mu=\sin ^{2}(\pi / 2 \cdot x) \cdot \mu_{MTE}(F)+\cos ^{2}(\pi / 2 \cdot x) \cdot \mu_{C}(F)

where μMTE\mu_{MTE} is given by:

μMTE=f(F)+(vs/FMT)(F/FMT)βT11+(F/FMT)βT\mu_{MTE}=\frac{f(F)+(v_{{s}}/F_{{MT}})\left(F / F_{{MT}}\right)^{\beta_{{T}}-1}}{1+\left(F / F_{{MT}}\right)^{\beta_{{T}}}}

where FMTF_{MT} is a threshold field beyond which the carrier velocity saturates to a constant and f(F)f(F) is a function as following:

f(F)=μlow[1+(μlow F(μlow μhigh )FK+μhigh F)βK]1/βKf(F)=\frac{\mu_{{low }}}{\left[1+\left(\frac{\mu_{\text {low }} F}{\left(\mu_{\text {low }}-\mu_{\text {high }}) F_{{K}}+\mu_{\text {high }} F\right.}\right)^{\beta_{{K}}}\right]^{1 / \beta_{{K}}}}

where FKF_K is the kink electric field.

The Canali Model is given by:

μC(F)=μlow(1+(μlowF/vs)βC)1/βC\mu_{C}(F)=\frac{\mu_{low }}{\left(1+\left(\mu_{low } F / v_{s }\right)^{\beta_{C}}\right)^{1 / \beta_{C}}}

The mixing parameter xx is given by:

x=vMTE(FMT)/vrefx=v_{MTE}\left(F_{{MT}}\right) / v_{{ref}}

The parameters for this model with their default values (GaN) are defined in the following table:

Symbol Parameter Name Electron Value Units
μlow mulow 0.1 m2/(V*s)
μhigh muhigh 0.01 m2/(V*s)
vs vs 1.91×105 m/s
vref vref 2.86×105 m/s
FK FK 1.4×106 V/m
FMT FMT 2.57×107 V/m
βC betaC 1.7 N/A
βT betaT 5.7 N/A
βK betaK 4 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Parallel electric field (V/m)
μlow N/A
μhigh N/A
vs Saturation velocity (m/s)
vref N/A
FK Kink electric field (V/m)
FMT N/A
βC N/A
βT N/A
βK N/A

Reference:

[1] Turin, Valentin O. "A modified transferred-electron high-field mobility model for GaN devices simulation." Solid-state electronics 49.10 (2005): 1678-1682. doi: 10.1016/j.sse.2005.09.002

[2] Farahmand, Maziar, et al. "Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries." IEEE Transactions on electron devices 48.3 (2001): 535-542. doi: 10.1109/16.906448

2.6 Poole-Frenkel Model

This model is used to calculate μ\mu.

Poole-Frenkel Model is the hopping mobility model commonly used for organic semiconductors.

The mobility from this model may be expressed using the following formula:

μ=μ0exp[(F/Fcr)px]\mu=\mu_{0} \exp \left[\left(F / F_{c r}\right)^{p x}\right]

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
F Parallel electric field (V/m)
μ0 N/A
Fcr N/A
px N/A

2.7 Tasch Model

This model is used to calculate μ\mu.

Tasch model[1, 2] defines the mobility as a function of the perpendicular and parallel electric fields, the interface charge, the lattice temperature and the doping concentration and is given by the following expressions:

μ=Γ+(EE0)dΓdE\mu = \Gamma + (E_{\perp}-E_0) \cdot \frac{d\Gamma}{dE_{\perp}}

where EE_{\perp} is the transverse electric field and E0E_0 is the transverse electric field at the edge of the inversion layer.

The function Γ\Gamma is defined as:

Γ=μeff(1+(μeffEvsat)β)1β\Gamma = \frac{\mu_{eff}}{(1+(\frac{\mu_{eff} \cdot E_{\parallel}}{v_{sat}})^{\beta})^{\frac{1}{\beta}}}

where EE_{\parallel} is the parallel electric field.

The carrier mobilities μeff\mu_{eff} are defined by three components μph\mu_{ph}, μsr\mu_{sr},and μc\mu_{c} that are combined by Mathiessen’s rule according to:

μeff=[1μph+1μsr+1μc]1\mu_{e f f}=\left[\frac{1}{\mu_{p h}}+\frac{1}{\mu_{s r}}+\frac{1}{\mu_{c}}\right]^{-1}

The term μph\mu_{ph} takes account of the effect of phonon scattering and is given by:

μph1=(μb(TL300)Tμb)1+(Z/(DY(TL300)0.5))1\mu_{ph}^{-1} = (\mu_b \cdot (\frac{T_L}{300})^{-T_{\mu_b}})^{-1} + (Z/(D\cdot Y \cdot (\frac{T_L}{300})^{0.5}))^{-1}

The function ZZ is defined as:

Z=Z11(TL300)Eeff1+Z22Eeff13Z = Z_{11}\cdot(\frac{T_L}{300})\cdot E_{eff}^{-1} + Z_{22}\cdot E_{eff}^{-\frac{1}{3}}

where:

Eeff=E+(R1)E0RE_{eff} = \frac{E_{\perp}+(R-1)\cdot E_0}{R}

The function YY is defined as:

Yn=P1(TL300)B1+P2nB2(TL300)1NfY_n = P_1 \cdot (\frac{T_L}{300})^{B_1} + P_2 \cdot n^{B_2}\cdot(\frac{T_L}{300})^{-1}\cdot N_f Yp=P1(TL300)B1+P2pB2(TL300)1NfY_p = P_1 \cdot (\frac{T_L}{300})^{B_1} + P_2 \cdot p^{B_2}\cdot(\frac{T_L}{300})^{-1}\cdot N_f

where NfN_f is fixed interface charge per unit area at the gate dielectric-silicon interface.

The term μsr\mu_{sr} takes account of the effect of surface roughness and is calculated according to:

μsr=(EsrEeff)β\mu_{sr} = (\frac{E_{sr}}{E_{eff}})^{\beta}

The final term, μC\mu_C, models Coulombic scattering with the expressions:

μC,n=N2(TLT0)1.5NA[ln(1+γBH,n)γBH,n1+γBH,n]\mu_{C,n} = \frac{N_2*(\frac{T_L}{T_0})^{1.5}}{N_A \cdot [ln(1+\gamma_{BH, n})-\frac{\gamma_{BH, n}}{1+\gamma_{BH, n}}]} μC,p=N2(TLT0)1.5ND[ln(1+γBH,p)γBH,p1+γBH,p]\mu_{C,p} = \frac{N_2*(\frac{T_L}{T_0})^{1.5}}{N_D \cdot [ln(1+\gamma_{BH,p})-\frac{\gamma_{BH,p}}{1+\gamma_{BH,p}}]}

Here:

γBH,n=N1n(TL300)α\gamma_{BH,n} = \frac{N_1}{n}\cdot (\frac{T_L}{300})^{\alpha} γBH,p=N1p(TL300)α\gamma_{BH,p} = \frac{N_1}{p}\cdot (\frac{T_L}{300})^{\alpha}

where NAN_A is the channel acceptor doping concentration in m3m^{-3}, NDN_D is the channel donor doping concentration in m3m^{-3}, nn and pp are the electron and hole concentrations per unit volume in the inversion layer (m3m^{-3})

The parameters for this model with their default values (n-MOSFET for electron values and p-MOSFET for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
R R 2 3 N/A
β beta 2 1 N/A
μb mub 0.115 0.0027 m2/(V*s)
Tμb Tmub 2.5 1.4 N/A
D D 3.2×10-9 2.35×10-9 N/A
P1 P1 0.09 0.334 N/A
B1 B1 1.75 1.5 N/A
P2 P2 4.53×10-8 3.14×10-7 N/A
B2 B2 -0.25 -0.3 N/A
Z11 Z11 0.0388 0.039 N/A
Z22 Z22 1.73×10-5 1.51×10-5 N/A
Esr Esr 2.449×109 1.0×1010 V/m
N2 N2 1.1×1027 1.4×1024 m-3
N1 N1 2.0×1025 8.4×1022 m-3
α alpha 2 3.4 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
E Transverse electric field (V/m)
E0 Transverse electric field at the interface (V/m)
E Parallel electric field (V/m)
R N/A
β N/A
μb N/A
Tμb N/A
D N/A
P1 N/A
B1 N/A
P2 N/A
B2 N/A
Z11 N/A
Z22 N/A
Esr N/A
N2 N/A
N1 N/A
α N/A
TL Lattice temperature (K)
NA Acceptor concentration (m-3)
ND Donor concentration (m-3)
n Electron concentration (m-3)
p Hole concentration (m-3)

Reference:

[1] Shin, Hyungsoon, et al. "A new approach to verify and derive a transverse-field-dependent mobility model for electrons in MOS inversion layers." IEEE transactions on electron devices 36.6 (1989): 1117-1124. doi: 10.1109/16.24356

[2] Shin, H., et al. "Physically-based models for effective mobility and local-field mobility of electrons in MOS inversion layers." Solid-State Electronics 34.6 (1991): 545-552. doi: 10.1016/0038-1101(91)90123-G

2.8 Yamaguchi Model

This model is used to calculate μ\mu.

The Yamaguchi Model[1] consists of calculating the low-field, doping dependent mobility. Surface degradation is then accounted for based upon the transverse electric field before including the parallel electric field dependence.

The low-field part of the Yamaguchi Model is given as follows:

μ0=μL[1+NNS+Nref]12\mu_0 = \mu_{L} \cdot [1 + \frac{N}{\frac{N}{S}+N_{ref}}]^{-\frac{1}{2}}

where NN is the total impurity concentration. The equation parameters: μL\mu_L, SS, NrefN_{ref} are user-definable.

The transverse electric field dependence is accounted for as follows:

μs=μ0(1+ASE)12\mu_s = \mu_0 \cdot (1+A_S \cdot E_{\perp})^{-\frac{1}{2}}

where EE_{\perp} is the perpendicular electric field and the parameter, ASA_{S}, is user-definable.

The final calculation of mobility takes into account the parallel electric field dependence which takes the form:

μ=μs[1+(μsEUL)2(G+μsEUL)1+(μsEVS)2]12\mu = \mu_s \cdot [1 + \left(\frac{\mu_s \cdot E_{\parallel}}{U_L} \right)^2 \cdot \left( G + \frac{\mu_s \cdot E_{\parallel}}{U_L}\right)^{-1}+ \left( \frac{\mu_s \cdot E_{\parallel} }{V_S} \right)^2]^{-\frac{1}{2}}

where EE_{\parallel} is the parallel electric field and the parameters: ULU_{L}, VSV_{S} and GG are user-definable.

The parameters for this model with their default values (n-MOSFET for electron values and p-MOSFET for hole values) are defined in the following table:

Symbol Parameter Name Electron Value Hole Value Units
S S 350.0 81.0 N/A
Nref Nref 3.0×1022 4.0×1022 m-3
μL muL 0.14 0.0480 m2/(V*s)
AS AS 1.54×10-7 5.35×10-7 m/V
VS VS 1.036×105 1.2×105 m/s
UL UL 4.9×104 2.928×104 m/s
G G 8.8 1.6 N/A

The type of corresponding parameters are listed in the following table:

Symbol Updated During Simulation Predefinition of Material Parameter Device Configuration Description
E Transverse electric field (V/m)
E Parallel electric field (V/m)
S N/A
Nref N/A
μL N/A
AS N/A
VS N/A
UL N/A
G N/A
N Total concentration (m-3)

Reference:

[1] Yamaguchi, Ken. "A mobility model for carriers in the MOS inversion layer." IEEE Transactions on Electron Devices 30.6 (1983): 658-663. doi: 10.1109/T-ED.1983.21185

Conclusion

In this article, we've delved into the key mobility models for electrons and holes in silicon (Si) semiconductors, exploring how they function under both low-field and high-field conditions. These models are not just theoretical constructs; they are practical tools that help engineers and researchers accurately simulate and optimize the behavior of semiconductor devices. The models discussed are indispensable for predicting carrier dynamics, accounting for factors such as velocity saturation and field-dependent mobility variations. Mastery of these models is essential for advancing semiconductor device performance and also enabling more accurate design processes.